
~ )  P ~ g l l m o l i  
0021--8928(95)00124-7 

Z App£ Maths Mech& Vol. 59, No. 6, pp. 911--919,1995 
Copyright © 1996 Elsevier Science Ltd 

Printed in Great Britain. All rights rese~ed 
0021-8928/95 $24.00+0.00 

THE PROBLEM OF CONFLICTING CONTROL 
WITH MIXED CONSTRMNTSt 

N. Yu. L U K O Y A N O V  

Ekaterinburg 

(Rece/ved 31 January 1995) 

The control problem for a linear dynamical system is considered at a minimax of the terminal quality index. Feasible controls 
are simultaneously rest~Scted by geometrical constraints and by integrated momentum constraints, the latter being thought of 
as a store of control n,sources. The problem is formalized as a differential game [1--4] using concepts [5-8] developed at 
Ekaterinburg. Here, because of the geometrical constraints, the momentum formulation and its associated difficulties [2--4] do 
not appear. On the other hand the presence of the integral restrictions leads to the appearance of additional variables whose 
evolution describes the dynamics of the expenditure of the control resources. These variables are subject to phase restrictions, 
which is a peculiarity of the problem. A reasonably informative picture and a class of strategies for which the given game has a 
value and a saddle point are given. A constructive method for computing the value function of the game and constructing optimal 
strategies is presented. This method is conceptually related to the construction of a stochastic programming synthesis [5] and is 
based on the recursive construction of upper-convex envelopes for certain auxiliary functions. The poss~ility of exchanging the 
minimum and ~ u m  operations over the resource parameters when calculating the value of the game using these procedure 
is established. 

The present paper extends the constructions described in [5-7], in accordance with [8], to problems 
with mixed restrictions on the controls. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

S u p p o s e  t ha t  the  evolu t ion  of  a dynamica l  sys tem is desc r ibed  by the  equa t ion  

dx/dt = A(t)x + B(t)u + C(O~ (1.1) 

X E R n, u E R r, ~ E R s, t O <~ t ~ O 

where x is the phase vector, u and ~ are the control vectors of the fast and second players, respectively, 
A(t ) ,B( t )  and C(t) are piecewise-continuous matrix functions that are continuous from the right at points 
of discontinuity, attd to and O are fixed instants of time. The admissible controls of the first and second 
players, u[t0[.]O) = {u[t], to ~< t < O} and O[t0[.]O), respectively, are assumed to be any Borel-measurable 
vector functions that simultaneously satisfied the geometrical constraints 

lu[tllt ~< M, Ix)[t]l 2 ~< N, t o ~< t < 0 (1.2) 

and the integral-momentum constraints 

0 0 

f ot(x)lu[xll I dx <~ ~t[t0], J ~(~)lx)[,c]l 2 d~c ~ vtt0] (1.3) 
to to 

Here I • I1, I • 12 are certain norms in R' and R' respectively, M and N are known constants, g[t0] > 0, 
v[t0] > 0 are specified numbers,  and ct(x) and I~(x) are positive scalar functions cont inuous  in [to, 0] .  

We will consider the problem of  the controls  u and a~ that are respectively intended to minimize and 
maximize the terminal quality index 

~----" LY[O]I3 (1.4) 

where I • [3 is some norm in R ~. 
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We will formalize this problem as a differential game [5, 8]. 
We supplement the phase vector x of system (1.1) by introducing variables IX and v whose evolution 

is described by the equations 

dlMdt = --<x(t)lull, dv[dt = -[~(t)hkl2, t o ~< t ~< O (1.5) 

Then the integral restrictions (1.3) are rewritten in the form of phase restrictions on Ix and v 

0---<IX--<Ix[~], 0~<v~<v[~]  (1.6) 

By a strategy u(-) for the first player and v(-) for the second player we mean any vector functions 

u(.)= {u(t,x, ix, v ,e) ,  lu(t,x, ix, V,e.)ll <~M, {t,x, ix, V} ~ G, 8>0}  (1.7) 

X)(-)= {X~(t,x, IX, V, 8), Ig(t,x, IX, V, 8 ) I2~N,  {t,x, ix, V} ~ G, e > 0 }  (1.8) 

where 

G = l {t,x, Ix, v}: to <- t <~ ag, lxle <~ R[t], 0--< IX--< Ix[t0], 0~<v~<v[t0]} 

R[t] = (1 + R0)exp{X(t - to)} - 1 

(1.9) 

is the domain of possible positions of the extended system (1.1), (1.5) and 8 is the precision 
parameter [5, 8]. In (1.9) I x le is the Euclidean norm of x, and R0 > 0 is a sufficiently large number 
determined from the initial state of system (1.1) at time t = to; the value of the parameter ~. is given 
by the formula 

2L = ~,1 + k2Mexp(~,l(O - to)) + 2L3N (1.10) 

2kl = maxtllA(t)ll, 2L2 = maxtllB(t)ll, ~.3 = maxrllC(t)ll, to ~< t ~< 0 

IIA(t)ll = maxxlA(t)xle, Ixl e ~< 1; liB(nil = maxulB(t)ul v lul 1 ~< 1 

IIC(t)ll = maxulC(t)x)le, 1~12 ~< 1 

Note that the restriction on the actual value of the phase vector x in the definition of the domain G 
in (1.9) is not onerous because it is satisfied by any motion of the system (1.1) generated by arbitrary 
measurable realizations of controls that conform to the geometrical restrictions (1.2). However, 
restrictions (1.6) on the values of IX and v (1.5) are not in general guaranteed by such realizations unless 
the additional conditions (1.3) are also assumed. 

Suppose that the position {t., x., Ix., v.} ~ G (1.9) has been reached. We denote by A~ (8 > 0) a 
decomposition 

A~= {ti: q=t, , t i+l  >ti, ti+a-ti <~8, i=1  ..... k, tk+l=O} (1.11) 

of the interval It., O] in which we include all points of discontinuity of the matrix functions AQ),  B(t)  
and C(t). A chosen strategy u(.) for the first player, the value e > 0 and the decomposition As (1.11) 
determine the control law U of the first player 

U = {u(-), e, As} (1.12) 

Suppose that the system is acted upon by some admissible control 

0 

~[t.[']O)={a)[t],iu[t]i2~<,N, t . < - t < O ,  S ~(%)191%]t2d%~v*} (1.13) 
l, 

of the second player. Then the motion {xv[t], Ixu[t], v[t]}, t. ~< t ~< ~, where the quantities Ixu[t], v[t] 
give the remaining resources at time t for the first and second players respectively, is uniquely shaped 
under the action of the law U as the solution of the stepwise differential equations 

dx u [t] / dt = A(t)x  u [t] + B(t)u[, i,,i+~)[t] + C(t)~)[t] (1.14) 
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dg u [t] / dt = -ot(t)l utt~,tm)[t]ll, dr[t] /d t  = -13(t)l'o[t]l 2 

t!<<-t<ti+ 1, i=1  ..... k; X u [ t l ] = x . ,  IXu[tl]=Ix., V[tl]=V. 

The initial state {xv[ti], Ixo[ti], v[ti]} for ti <<- t <- ti+l, i > 1 is identical with the final state {xe[ti], Ixv[ti], 
v[ti]} for the preceding interval ti-1 <~ t <- ti. In (1.14) the realization of the control of  the first player 
uit~,t~+o[t], ti <<- t < ti+l, i = 1 . . . . .  k at each step is designated by the law U (1.12) in the following fashion 

utti,tm)[t]=O, t i <<- t<ti+ l, if Ixu[ti]=O (1.15) 

~ U i, t i ~ t < , f  , 
~ti 'ti+l)[t]=~O, t" <~t <ti+l,  i f  O< ~ u [ t i ] <  Ji(t i+l) 

where f is defined by the condition Ji(t') --- Ixo[ti]; we finally have 

utt~,ti+o[t]=ui, t i <<- t < ti+l, if Ixu[ti]>- Ji(ti+l) 

Here 

t 
u i = u ( t i , x u [ t i ] ,  Ixv[ti], v[t/],E), J i ( t ) = S  ot(x) lui l ldz  

tt 

Similarly, given that the position {t., x., Ix., v.} e G (1.9) has been reached, a chosen strategy ~(-) 
(1.8) for the second player, the value of e > 0 and the decomposition A8 determine the control law 
V = {~(.), e, As} of the second player. This law, paired with some admissible realization of the control 
of  the first player 

0 

u[t.[.]O) = {u[t],lu[t]l I ~ M, t. ~< t < O, S tx(x)lu[X]ll dx <~ Ix.} (1.16) 
t, 

uniquely defines the motion {xv[t], Ix[t], Wit]}, t. ~< t ~< ~. 
The realizations of the controls u[t.[.]a~) = {u[t~, t~+0[t], ti <~ t < ti+l, i = 1, . . . ,  k} and ~[t.[.]~] = 

{~it~,ti+o[t], t i ~ t < ti+ 1, i = 1 . . . .  , k} shaped by the laws U and Vand constructed by (1.15) (for u[-], 
and similarly for a)l[-]) are admissible in the sense of (1.16) and (1.13). Consequently, by virtue of (1.9) 
and (1.10) the positions { t , x~ t ] ,  Ixv[t], v[t]} and {t, Xv{t], Ix[t], Vv{t]}, t. ~< t ~< a~ considered do not leave 
the confines of the domain G. 

The quantities 

p,,(u(.); t , , x . , ix . ,v . )=  li-m limsupsupT (1.17) 
t ~ 0 8 ~ 0  A 6 u[--] 

pu(u(.); t . ,x . , Ix. ,v .)  = lira lim inf infy  (1.18) 
5 ~ 0  A 6 u[.] 

are called the guaranteed results of the strategies u(.), ~(-) and the original position {t., x., IX., v.} 
G. Here As is the decomposition (1.11); in (1.17) and (1.18) the upper and lower bounds are taken over 
all measurable realizations u[t.[.]a~) (1.16), ~[t.[.]a~) (1.13). 

We say that the first player strategy u°(-) and the second player strategy ~0(.) are optimal if for any 
position {t.,x., Ix., v.} e G we have 

pu(u°(.); t , , x . , i x . , v . ) = m i n p u ( u ( . ) ;  t , ,x . , ix , ,v .)  
u(-) 

p~(~o(.); t , ,x , ,p . , ,v , )=maxpu(~(-) ;  t , , x , , g , , v , )  
~(-) 

The existence of optimal strategies u°(-), ~0(.) and the validity of the equality 

pu(u°(.); t., x., ~t., v.) = pu(~0(-); t., x., It., v.) = p°(t., x., IX., v.) 
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for any position {t., x., Ix., v.} ~ G were established in [8]. This means that p°(t., x., IX.. v.) is the 
value of the differential game under consideration, and the pair of optimal solutions {u°(.), ~0(.)} forms 
a saddle point. We stress that optimal strategies are efficiently constructed from a known value function 
by the method of extremal displacement to a comoving position [8]. 

2. C A L C U L A T I O N  OF T H E  VALUE OF THE GAME 

We consider the auxiliary model 

dw/dx = A(x)w + B(x)u + C('c)9, dwn+l/dx = --¢t(x)lul l 

dw~+~dx=-~(X)t~12, w ~ R n, u ~ Rr, ~ ~ R', to <~ X<~ O 

(2.1) 

We define the domain G' of possible positions for the model 

G'=  {l'c,W, Wn+t, wn+2}: to <~ X<~ O, IwI~<R'[x], 0~<wn+l~-<IX[t0]+ ~, 

0 <~ w,,+2 ~< v[t0] + ~}, R'[X] = (1 + R 0 + ~)exp{~.(x - to)} - 1 (2.2) 

In (2.2) ~ > 0 is a fairly small fixed number, and R0 and ~. are given by (1.9) and (1.10). We note 
that G (1.9) C G" (2.2) ({x, w, w~+l, wn+2} = {t, x, Ix, v}), and also that the motions {w[x.[.]O], 
w~+l[x.[.]O], w~+2[x.[-]O]} of model (2.1) generated from any position (x., Wo, Won+l, w*n+2} ~ G'  by 
realizations u[x.[.]~) (1.16), ~[x.[.]O) (1.13), where t. = x°, Ix. = w.n+l, v. = Won+2, do not leave the 
domain G'. 

Suppose that a position {x., w., Ix°, v.} e G' (2.2) for model (2.1) has been chosen, together with a 
decomposition Ak = Ak{Xj} = {Xj" X 1 = T ,* ,  T,j+ 1 > Xj, j = 1 . . . .  , k, %k+1 = O} of the interval [x., O] 
which includes all points of  discontinuity of the matrix ftmctionsA(t), B(t)  and C(t). We introduce the 
functions 

r XJ+l ] 
min max | f (m,X[~,x](B(x)u[x]+C(x)9[x]) )dx  

f 
DTCIX) = lu[xJ:lu[x]ll <~ M, 

O)~(v) = t~['g]:lx)['c]12 ~ N, 

j = l  ..... k, Ix>~0, v>--0; 

(2.3) 

"tJ+l Ct(,~)l U[,~]II IX } ~< x<xj+l ;  S dx~< "cj 
xj 

'~j+l } 
xj 

m e S = { m e R " , l m l * ~ <  1} 

where I • I* is the norm conjugate to the norm I • h which appears in (1.4); X[t, x] is the fundamental 
matrix for the equation dx/dt = A(t )x ,  and we denote by (-, .} the scalar vector product; D~(IX) and D~(v) 
are weakly-compact sets of  measurable vector functions. The function A~(m, IX, v) is continuous 
over the set of its arguments, convex in IX, non-increasing in IX and non-decreasing in v. The values of 
A~j(.) (2.3) do not change if in the definition of the sets D~(IX) and D~(v) the inequality sign in the last 
integral constraints is changed to an equality sign (for those values of IX and v for which this equality 
is possible). 

We then introduce the function tp~(.) by the recursive procedure 

tpk+l(m, IX, v) = 0, cp;(m, Ix, v) = {Vj (', IX, v)}. (2.4) 

~ ( m ,  IX, v )=  max min [A~j (m,  I X - I X ' , v - v ' ) + 9 ~ + I ( m ,  IX',v')] 
v" eNj(v)p." ~Mj(I.t) 

m ~ S, O <<- Ix <~ IX., O~<v~<v., j = k ..... I 

where 
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M j  (~t) = ~t': max O, I x -  M ~ o~(x)dx <~ Ix" <~ Ix 
xj 

N j ( v ) =  v': max O, v - N  

915 

(2.5) 

and the quantity 

e* ('c., w.,Ix., v.; Ak) = ma~t(m, XtO,'c.]w.)+tO~ (m, Ix., vo)] (2.6) 

In (2.4) the symbol tO(m) = {¥(.)}. denotes the upper convex envelope of the function y ( . ) - -  
the minimal concave function which majorizes the function ¥(m),  m ~ S. Here and below the 
upper convex envelope is taken only for m E S for fixed values of the other variables. In (2.4) and 
(2.6) the corresponding minima and maxima are indeed reached since the following lemma 
holds. 

L e m m a  1. If S -- {m E / ~ ,  I m I* ~< 1} is a polyhedron or a strictly convex set, then the functions 
¥~(m, Ix, v) and tO~(i,n, IX, v ) , j  = k , . . . ,  1 are continuous on the set S x [0, IX.] x [0, v.], convex in Ix, 
non-increasing in Ix and non-decreasing in v, with tO~(rn, IX, v) concave in m. 

The validity of Lemma 1 follows from the well-known facts of convex analysis [9]. 

Remark. If some function ¥(m), m e S is continuous, then {¥(m)}. will always be continuous on the entire set 
S in the case when S satisfies the conditions of Lemma 1, from which the validity of the above follows. If not, one 
can choose S to be a polyhedron approximating the set {m ~ / ~ ,  I m I* <~ 1}. Then the further arguments are 
unchanged, and the result obtained will be true with an accuracy corresponding to the accuracy of the given 
approximation. 

We recall that when the value of the game was calculated in [8] the functions ~j(m, Ix, v) and to;(rn, 
Ix, v) were used instead of the functions y j ( m ,  IX, v) and tO j(m, Ix, v), and that the former were determined 
in terms of  A~(m,  i~t, v) (2.3) using formulae (2.4), (2.5), with the sole difference that in (2.4) the 
operation min~t,maxv, appeared instead of maxv,min~t,. Correspondingly, instead of e*(x. ,  w. ,  Ix., v.; ~ )  
in accordance with (2.6), where on the right-hand side one has to replace tO~(.) with tO1('), the quantity 
e(x . ,  w. ,  IX., v.; Ak) was defined, for which the following result was established [8] 

Theorem 1. Whatever the original position {t., x., Ix., v.} ~ G (1.9) and sequence of  subdivisions 
Ak = Ak{Xj} (k = 1, 2 , . . . )  of the interval ]t., O],xl = t,,  Xk+l = 0 with step 5k = maxj(xj+l -Xj ) , j  = 
1 . . . .  , k satisfying t]he condition lim 5k = 0, k ~ , we have the equality 

lim e ( t . , x . , I x . , v . ; A k )  = p°( t . ,x . , Ix . ,v . )  
k-4*~ 

In view of the definition if e*(-) (2.6) and e(-) in [8], for any positions {x., w., Ix., v.} and subdivision 
~ ,  of  the interval [x,, 0], we have the inequality 

e*(x., w., Ix., v.; Ak) <~ e(X,, w. ,  Ix., v.; Ak) (2.7) 

Furthermore, a situation may arise in which inequality (2.7) is strict. 
This is shown by the following 

Example. Consider the system described by the equations 

dx/dt = b(t)u + c(t)9, 0~<t~<2, x c R 1, u c R I, 

where 

¢ R l (2.8) 

b(t)={~' 0 ~ t < l  {6, 0 ~ t < l  (2.9) 
l ~ t ~ 2 ;  c(t)= 2. l ~ t ~ 2  

Suppose that the controls u and aJ are constrained by restrictions of mixed type 
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2 2 
lul<~l, I~1~<1; ~ lu[x]ldx<~l, ~ Ix)[x]ldx<~0.25 (2.10) 

0 0 

and the quality index has the form 

y = Ixt2ll (2.11) 

Suppose that the position {x., w., Ix., v.} = {0, 0.5, 1, 0.25} has occurred. We assign the subdivision A2 = {xl = 
0, x2 = 1, 1:3 = 2} to the time interval [0, 2]. 

Then, performing the calculations, we obtain 

9~(m,1,0,25) =- tml/2,  ~01(m,1,0.25 ) = I -Im12 I(l-lml), lml~ < 0,2 (2.12) 
[ (1-91ml)/16,  0,2 <lml<~ 1 

and correspondingly 

e*(0, 0.5, 1, 0.25; A2) = 0, e(0, 0.5, 1,0.25; A2) = 2.5 - N~ > 0 (2.13) 

We show below that despite inequality (2.7) (possibly strict, as, for example, in (2.8)-(2.13)) for any 
positions {t., x., Ix., v.} e G (1.9) of the extended system (1.1), (1.5) and sequence of subdivisions 
Ak = Ak{xj} (k = 1, 2 , . . .  ) of the interval [t., ~], xl  = t. ,  Xk+l = O with step 8k = maxj(X/+l - Xj) , j  = 
1 , . . . ,  k satisfying the condition lim 5k = 0, k ---> **, we have the equality 

lira e * ( t . , x . , I x . , v . ; A k ) . =  lira e ( t . , x . , I x . , v . ; A k ) = p ° ( t . , x . , I x . , V . )  (2.14) 
k---¢~ k--c** 

We first establish the important properties of Ix-stability ([5], p. 208) and ~-stability [5, p. 216] of the 
quantity e*(.) (2.6). 

Theorem  2 (Ix-stability of e*(.)). For any e > 0 a 5(e) > 0 exists such that whatever the position of 
the model {x., w. = w[x.], Ix.[x.], v. = v[x.]} e G'  (2.2) (Wn+ 1 = Ix, Wn+ 2 = V) and subdivision A k = 
Ak{xj} of the interval [x., 0], for any admissible realization u.[x.[.]x*) e D~(v.)  (2.3), where x* = x2 is 
the second point of the subdivision Ai{xj}, one can find an admissible realization u[x.[.]x*) ~ D~(Ix . )  
(2.3) such that the motion of the model generated by these realizations from the position {x., w., Ix., 
v.} arrives at the position ~x*, w* = w[x*], Ix* = Ix[x*], v* = v*[x*]} ~ G', and the inequality 

e*(z*, w*, Ix , v ;A k*)- e (**, w., g., V.; At) ~ e(X* - **) (2.15) 

is satisfied if only  

x ' - x .  ~< 5(e) (2.16) 

where A~,. = A~,. {x~} is a subdivision of  the interval [x*, ~], ~] = x*, x~.+l = ~ satisfying the condition 
x~ = xi, i = j + 1 , j  = 1, . . . , k*,  k*  = k -  1, andxj ¢ Ak. 

Proof. Suppose that position {x., w., IX., v.} ~ G" has occurred and that a subdivision Ak of the interval 
Ix., a~] has been chosen satisfying condition (2.16) with a 8 (0  > 0 sufficiently small for the following 
arguments to be valid. We fix a realization a~.[x.[-]x*) ~ D~l(v.), and consequently v* = v[x*] as well. 
We consider the set M W  = MW(x*, x., w., IX.) C R~+l--the domain of accessibility in the space of 
variables {w, Ix} C R ~+1 up to time x* for motions of  the model generated from the position {x., w., 
Ix., v.} by any control u[-] ~ D~(Ix.) paired up with a~.[x.[.]x*). This set is non-empty, convex and compact 
in R n+l. Furthermore, i fy = {w, IX} ~ MW, then IX ~ MI(IX. ) (2.5) and for any Ix" ~< I1, IX' ~ MI(IX.) we 
havey '  = {w, IX'} ~ MW. Along with M W w e  introduce the set 

M W '  = MW'('c*, x . ,  w . ,  ~t.) C R n+' 

{ M W ' =  {w',Ix}: Ix=g .  -- ~ oqlulXllldt, IxGMI(Ix.) 

** x* 
W" = X[X*, X, lW* * I xlx*,xlc(x)u.txlat+ J X[ t ' ,  x, ]B(x, )u[x]dx 
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lu[~]l I ~< M, eq = max~ or(X), 'c, ~ 't ~< x*} (2.17) 

The set MW' (2.1.7) is convex and compact in R n+l. The intersection of  MW' and the hyperplane 
Ix = Ix0 (which we denote by MIV I St = Ix0) is non-empty and compact in R n for all Ix0 e MI(IX.). 
We also note that i fy  = {w', IX} ~ MW', then by (1.10), (2.2) and (2.17) the position {x*, w', It, v*} 
G" (2.2). Because ot" these properties of the sets M W  and MW' and the continuity properties of A(x), 
B(x), (x('c) when x. -'~ x ~ x* (recalling that all the points of  discontinuity of the matrix functionsA(t) 
and B(t) are included in the decomposition Ak), we have the following lemma. 

Lemma 2. For any e > 0 a 5(e) > 0 exists such that for any vector y0 = {w,O, IX0} ~ MW" one can 
find a vector z ° = {w °, IX0} ~ M W  such that the relation 

lY ° -- z°le =lw '° - w°l¢ ~ e(z* - z ,)  

holds so long as cortdition (2.16) is satisfied. 
To prove the theorem it is sufficient to show that a vectory ° = {w '°, Ix0} ~ MW' exists satisfying the 

condition 

Ae ° = e* (~.', w'°,ix°, v*; A'k, ) -e*(x, ,w. ,IX. ,v.  ;At) ~< I~(X" - x.) (2.18) 

where x* - x. ~< 8(e) and 8(e) > 0 is a sufficiently small number. 
Indeed, accordin 1, to Lemma 2, it follows from (2.18) and the Lipsehitz property of e*(x, w, St, v; A) 

0 0 0 (2.6) with respect to the variable w that a z = {w,  IX } ~ M W  exists such that inequality,(2.15) 
(with w* = w~IX* ---: 11o) holds. Bearing in mind the definition of  the set M W a n d  the domain G (2.2), 
that is the content cff the theorem. 

We then suppose that a pair (m°, y0 = {w,0, Ix0} ) ~ D = [S x MW'] has been found which simultaneously 
satisfies three conditions 

(mO,X[O,x*]w,O) * o o • + (P2 (m , IX , v ) = max[Idem(m ° ---> m)] (2.19) 
m ~ S  

• * 0 0 * AVI(m° , IX. - IX° ,v . -v  )+q~2(m ,Ix ,v )=  min [Idem(ix°--->ix')] (2.20) 
tt'~Ml(la,) 

(m°,X[O,x*]w'°)= min o[(m°,X[O,x*]w')] (2.21) 
w" ~ M W ' I I . t = t l  

Here  Idem on the fight-hand side of an equation denotes the expression on the left-hand side with the 
substitution shown :in the parentheses. 

Suppose that u°[~,[.]x *) = {u°[x], x, ~< z < x*} is a realization of the control which, by (2.17), 
corresponds to the rec to ry  ° = {w ~°, Ix0} ~ MW'. From (2.17) and (2.21) we have 

,¢* 

(m °, X[O, x. ]B(x.)u ° [x])dx = min[Idem(u ° [x] ---> u[x])] (2.22) 
x, u[.]  

,¢ 

lu[z] l l~M, X .~X<Z* ,  S (xllu[x]lldX=ix*-ix ° 
' t ,  

Then, by virtue of  (2.6), (2.17) and (2.19) we obtain 

*. * ,0 0 * A* x / ~ t *  0 0 * e ~,X ,w ,IX ,V ;_,,)=\m°,X[O,x*]w'°/+tP2~m ,It ,v )=  

= (m °, X[O, "c, lw, ) + J (m °, X[O,/]C(x)x).[x])dx + 
"¢, 

+ J (m °, X[ 0,'~. ]B(z.)u 0 [xl)d'c + q)*2 ( m°, go, v* ) 
"¢, 

(2.23) 

On the other han~d, from (2.4)--(2.6), (2.19) and (2.20) we have 
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e* (x., w., IX., v. ;Ak) ---> (m°,X[O,x,]w.)+cp~(m°,Ix.,v,)>.. - 

>~ (m O, X[O,x.]w.) + A¥1 (m°, IX. - Ix0, v. - v*)+ q~[ (m°,ix°,v*) (2.24) 

The validity of Eq. (2.18) follows from (2.23) and (2.24), using (2.3) and (2.22) and the continuity 
properties ofA(x), B(x), ~(x) when x. ~< x ~< x.. 

We now verify that the pair (m°,y ° = {w '°, Ix0}) (2.19)--(2.21) does indeed exist. We construct a mappin~ 
D ---> D. We put each oair (m, y) e D in correspondence with the set Dl[m, y] of all possible pairs (m 0T, 
y(2)), where m 0) e M°(x*,y = {w', IX}) C S, andy  0) ~ MW'°(m) C MW" (2.17). Here M°(x*,y = {w', 
IX}) is the set of m ~ i n g  vectors m ° satisfying (2.19) with w '° -0 w', Ix0 = Ix, and MIC°(m) is the 
set otveetorsy = {w ~, IX } satisfying conditions (2.20), (2.21) withm = m. The minimum on the right- 
hand side of (2.21) (me ~ m) is a function continuous in its set of variables {m, Ix0}, m ~ S, Ix0 ~ MI(IX.) 
(2.5) and linear in Ix0, which follows from direct calculations of this minimum using (2.17). Using this 
and Lemma 1, one can verify that the sets M°(x*,y = {w', Ix}) are non-empty, convex, compact in R n 
and varying semicontinuousl~ from above by inclusion as y changes, and the sets MW ~ (m) are non- 
empty, convex, compact in R n ~ and vary semicontinuously from above by inclusion as m changes. Hence, 
by Kakutani's theorem [10, p. 638], the mapping in question has a fixed point (m °, y0 = {w,0, Ix0}) e 
D for which conditions (2.19)-(2.22) are simultaneously satisfied. Theorem 2 is proved. 

Theorem 3 (~-stability of e*(.)). Suppose that the position of model (2.1) {x., w. = w[x.], Ix. = IX[z.], 
v. = v[x.]} e G' (2.2) Wn+1 = IX, Wn+2 = V and the subdivision A, = Ak{xj} of the interval [x., O] 
have been chosen. Then one can find an admissible realization ~0[x.[.]x*) e D](v . )  (2.3) where x* = 
x2 e A, such that for any realization u[x.[.]x*) e D~I(Ix.) (2.3) the inequality 

e (x ,w[x ],Ix[x ], ['1: ]; k,)--e (X,,w,,Ix, ,v,;Ak)>-0 (2.25) 

holds for the corresponding motion of the model generated from the position {x., w., Ix°, v.} by these 
controls. 

Proof. By virtue of (2.4)-(2.6), Lemma 1 and known properties of envelopes convex from above which 
are corollaries of Carath6odory's theorem [9, p. 171], one finds a vector m0 e S and a number v0 e 
Nl(v.)  (2.5) such that for any realization u[x.[.]x*) e D~(IX.) we have the relations 

e* ( x,, w,,ix,,  v ,;Ak ) = max[(m,X[ O, x, ]w,) + {¥1(m, ix,, v,)}, ]= 
m~S 

= (mo,X[O,x, lw,)+ ~1 (mo,g , ,v , )  ~< 

<~ (mo,X[O,x, l w , ) + / W l ( m o , g ,  - g [ ¢ l , v ,  - Vo) + g~(mo,g[x*],v o) 

Suppose that a realization .o[X.[.le) has been chosen 
,g* 

(m o, X[0, x]C(x)~ o [x])dx = max[Idem(x) o [x] --> x)[x])] 
~, u[.] 

I~J[x]I2~<N , x , ~ < x < z  *, ~ [3(X)l'D[X]12dx=v,-Vo 
1[, 

(2.26) 

(2.27) 

Such a measurable realization ~0['] exists from the construction ~0['] e D~(v.), and ~0['] is universal, 
i.e. does not depend on the choice of the realization u[x,[.]x*) e D~I(IX.). Then, under the action of the 
controls u[x] and ~0[x], x. ~< x < x*, the model arrives at the position {x*, w[x*], Ix[x*], v[x*]} e G' (2.2) 
for which, by (2.1), (2.6) and (2.27), we have 

* * * * * * 

v[x*]=Vo, e (x ,w[x ],ix[x ],v[x ];A:)>~ 

~> (m o, X[O, x* ]w[x* ]) + tp~ (mo, It[x* ], v[x* ]) = (mo, X[O, x, ]w, + 

+ I (mo, X[O, xl(B('c)u[x] + C(x)~%[xl))dx + q~[(mo,ix[x*],Vo) 
'~, 

(2.28) 
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Inequality (2.25) follows from (2.26)-(2.28) using (2.3). Theorem 3 is proved. 
The existence of a value for the game under investigation means that from Theorems 2 and 3 we 

derive the following theorem as a corollary. 

Theorem 4. Whatever the original position {t,,x., IX., v,} ~ G (1.9) and sequence of decompositions 
6~ = Ak{Xj} (k = L 2 , . . . )  of the interval [t., ~], Xl = t., "Ck+l = 0 with step ~ik = maxj(xj+l - xj), 
j = 1, . . . .  k satisfying the condition lim 8k = 0, k ~ 0., we have 

lim e*( t . ,x . , Ix . , v . ;A  k) = p°(t . ,x . ,g . ,v . )  
k - ~  

Equation (2.14) follows from Theorems 1 and 4 using the uniqueness of the value of the game. 
In conclusion we note that by virtue of (2.14) and appropriate properties of e*(.) and e(.), but e*(.) 

and e(.) can be used to calculate approximately the value of the game and to construct strategies 
guaranteeing a restdt dose to the value of the game to a previously specified level of accuracy. A 
description of the method of forming such strategies based on e(-) is given in [8]. Moreover, in this 
context the operations of minimizing and maximizing with respect to the resource parameters IX' and 
v' in (2.4) can be interchanged, which is often useful in practical calculations. 

This investigation was carried out with financial support from the International Science Foundation 
(NMS000). 
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